Design of a Thermal Interface Material (TIM) Cycling Reliability Test Program for Semiconductor Test Requirements

David L. Saums, Principal, DS&A LLC, USA*

Tim Jensen, Senior Product Manager, Indium Corporation USA

Carol Gowans, Market Manager, Indium Corporation USA

Ron Hunadi, Market Development Manager, Indium Corporation USA

Mohamad Abo Ras, CEO and Co-Founder, Berliner Nanotest und Design GmbH, Germany

* Speaker and Corresponding Author

IMAPS New England Symposium
Boxborough MA USA • May 7, 2019

Purpose: TIM Contact Cycle Testing for Semiconductor Test and Burn-In

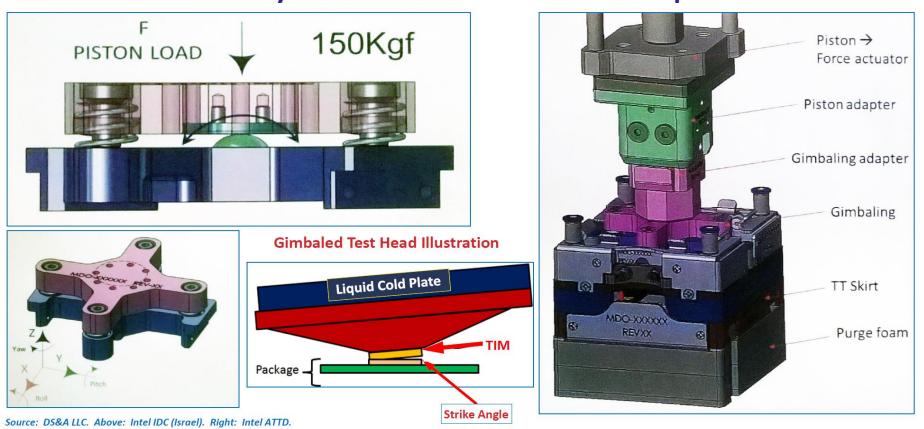
This presentation describes a reliability testing program for thermal interface materials (TIMs) for semiconductor test and burn-in applications:

- Survey, semiconductor test industry requirements for test parameters;
- Mechanical contact cycling and thermal resistance measurement of TIMs;
- Four program test phases, to test under increasingly rigorous cycling;
- Test results, Phases I IV;
- Analysis.

The overall purpose of this test program is to evaluate durability of selected TIMs under mechanical contact cycling equivalent to requirements for semiconductor test.

Thermal Interface Materials for Semiconductor Test and Burn-In

Specialized TIMs for semiconductor test and burn-in requirements:


- Required thermal resistance value to meet a package heat transfer goal;
- Zero residue or marking of Device Under Test (DUT) for each contact;
- Multiple contact cycles: Contact, pressure, and heat applied for each test cycle per DUT;
- Goal: Durability, to survive > 1,000 cycles.

ASTM D 5470-17 industry standard for TIM thermal performance testing:

- Berliner Nanotest TIMA 5 system selected;
- Servo-driven, automatable;
- Precise contact, pressure, heat flow capable.

Semiconductor Test System Head Assemblies -- Examples

Semiconductor Test Cycling Parameters

Semiconductor test engineers were surveyed to determine test parameters:

Table 1. Thermal /Mechanical Cycling Test Parameters						
Organization	Test Pressure Reported	Test Temperature Range Reported (°C)	Dwell (Seconds)			
Camarana A	11.7 bar (170 PSI)	25**/100	60			
Company A	11.7 bar (170PSI)	100	60			
Company B	6.7 bar (100 PSI)	-	60			
Company C	-	120	-			
Company D	-	100	-			
Company E	-	80	60			
Company	4.1/6.7 bar (60/100 PSI)*	105**/125	-			
Company F	6.7 bar (100 PSI)*	105**/125	-			

Note: * Pressure applied dependent upon die or package contact area. ** Initial value. Source: DS&A LLC.

Test Program: TIM Contact Cycle Testing for Semiconductor Test

Test program with four phases for TIM thermal and reliability testing specific to semiconductor test and burn-in:

Table 2. Thermal/Mechanical Cycling Test Program Design					
Program Phase	Purpose	Test Head Configuration*	Operating Temperature (°C)	Data Output	
-	Baseline Values	Parallel	70 – 95	R _{th} **, Thickness Change,*** 1,000 Contact Cycles	
II	Strike Angle	Upper Body: Strike Angle	70 – 95	R _{th} **, Cycle Count	
III	Strike Angle/Elevated Temperature	Upper Body: Strike Angle at Elevated Temperature	125	R _{th} **, Cycle Count	
IV	Baseline Values	Parallel	95	R _{th} **, Thickness Change,*** 5,000 Contact Cycles	

Notes: * Test head configuration and test system design per ASTM D 5470-17 thermal interface material testing methodology. Use of this test system and methodology is intended to provide industry-standard baseline thermal performance values.

^{**} Thermal resistance value is the principal thermal performance value for a TIM and uniform, stabilized values indicate an appropriately stable testing system.

^{***} Thickness change data is intended to provide indication of a stable test cycling process for baseline data.

Thermal/Mechanical Test System Design

Testing utilized a commercial ASTM D 5470-17 (modified) test stand:

Table 4. Thermal /Mechanical Cycling System Design				
Property	Value			
System	Berliner Nanotest TIMA5			
Upper Reference Body (Heater Bar)	125°C			
Lower Reference Body (Liquid Cold Plate)	75°C			
Sample Temperature	95°C			
Clamping Force Method	Servo Automated			
Clamping Force Applied	500kPa (5.0bar/72PSI)			
Temperature Measurement	In situ			
Thickness Measurement Under Force Applied	In situ			

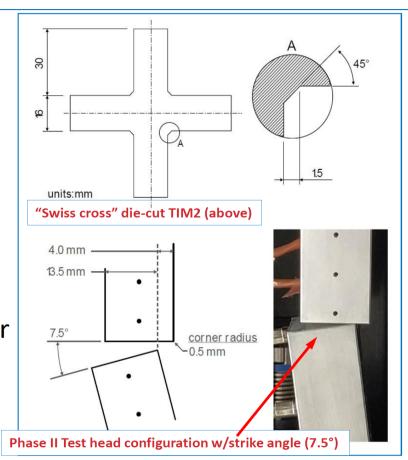
Note: Uniform single clamping force applied for all materials. Source: Berliner Nanotest und Design GmbH.

Test Data, Phase I: Parallel Test Heads

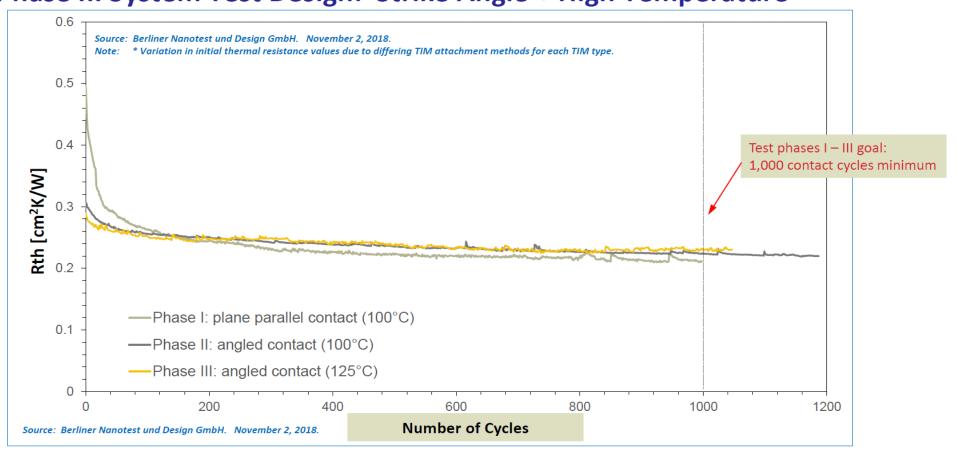
Phase I testing of all three TIM types successfully passed 1,200 cycles:

- HSMF-OS*: 0.051mm (0.002")-thick aluminum foil, coated one side only with non-silicone thermal compound. Applied with Al surface facing DUT.
- 99.99% flat indium foil [0.30mm (0.012") thickness, including clad (one side only) with 0.1μm (0.0005") aluminum]. Applied to test head with aluminum surface facing DUT.
- Indium Corporation Heat-Spring® HSK** patterned 99.99% indium foil, clad one side only with 0.1μm (0.0005") aluminum. Total thickness: 0.559mm (0.0220"). Applied to test head with bare aluminum surface facing DUT.
- Testing at 95C to establish baseline data with parallel test heads.

Note: ** Indium Corporation HSMF-OS. Heat-Spring® is an Indium Corporation Registered Mark. US Patent granted


Phase II System Test Design: Strike Angle

Test heads were adapted for this mechanical cycling test program to fit existing test stand.


- Test head (lower) strikes test head (upper) at 7.5° angle, to mimic actual conditions;
- TIM applied to upper test head;
- Nanotest TIMA5 test stand is servodriven, enabling use of this test stand to test with automated mechanical cycling for repeated, precise contact control.

Phase III System Test Design: Strike Angle + High Temperature

■ 125°C test temperature applied at the test head.

Phase III System Test Design: Strike Angle + High Temperature

Summary

Thermal interface materials (TIM) are integral for adequate heat transfer from a semiconductor source to an external environment.

 Specialized TIM materials can be characterized as "well-performing" when measured against challenging requirements for critical applications.

A range of metallic TIMs have been developed for specialized test applications requiring mechanical durability in challenging conditions.

- An automated mechanical cycling reliability test program has been designed to reproduce semiconductor test conditions to determine robustness:
 - All materials tested passed all Phases I IV cycling test goals successfully.
 - Test data and analyses are reported

Contact Information

DS&A LLC

Collaborative Innovation Works 11 Chestnut Street Amesbury MA 01913 USA David L. Saums, Principal

E: dsaums@dsa-thermal.com

Tel: +1 978 479 7474

Website: www.dsa-thermal.com

Thermal management consulting for semiconductors and electronic systems.

Indium Corporation

34 Robinson Road Clinton NY 13323 Tim Jensen, Sr. Product Manager, Engineered Solders

E: tjensen@indium.com

Ron Hunadi, Market Development Manager, Semiconductor and Thermal Materials

E: rhunadi@indium.com

Carol Gowans, Market Manager

E: cgowans@indium.com

Berliner Nanotest und Design GmbH

Volmerstrasse 9B D-12489 Berlin, Germany Mohamad Abo Ras, Chief Executive Officer, Co-Founder

E: aboras@nanotest.eu

Test equipment, thermal test wafers, and thermal test vehicles (TTVs) for semiconductor thermal material characterization.

Notes: Heat-Spring® is a registered mark of Indium Corporation. US Patent applies. TIMA and TIMA5 are registered marks of Berliner Nanotest und Design GmbH.